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Abstract. Quantum-size effects have been shown to influence significantly the determination of
work functions from thin-slab calculations. We show here that a technique based on macroscopic
averages can be used to reduce such effects and determine more precisely the work functions
of metals fromab initio thin-film calculations. The technique combines the mean electrostatic
potential step across the slab surface with the Fermi energy of a bulk crystal. The method is applied
to Al(100) slabs containing 1–14 atomic layers.

Ionization potentials of solids, and in particular work functions of metals, are nowadays best
calculated byab initio methods in the framework of density functional theory [1, 2]. These
calculations present a theoretical challenge, since the work function depends sensitively on the
surface ionic and electronic charge distributions, and may be influenced by any surface atomic
relaxation or reconstruction. The most efficient first-principles methods generally make use of
slab configurations to calculate surface properties. In view of the heavy numerical operations
involved, one is usually restricted to studying slabs containing only a small number of atomic
planes. If adsorbed atoms or molecules are included in the analysis, the substrate is often
reduced to a few atomic layers [3,4]. Quantum-size effects (QSE) are known to influence the
physical properties, including the surface energies and the work functions, of thin metallic
slabs [5–8]. In particular, persistent quantum-size oscillations of 0.1 eV have been exhibited
recently in the work functions of Al(111) slabs up to twelve atoms thick [9]. These oscillations
and the resulting slow convergence of the work functions with slab thickness hinder a precise
determination of the work functions of semi-infinite crystals. In this paper, we apply an
accurate post-processing method based on a macroscopic averaging technique to solve this
problem. We show that this approach reduces QSE and allows one to extract precise work
functions for semi-infinite metals fromab initio thin-slab calculations.

Before introducing this procedure, we will first briefly discuss the approach that is
generally used to evaluate work functions from thin-film calculations. We will then describe our
proposed technique and compare the results obtained using the two schemes. As a prototypical
system, we focus on the aluminum (100) surface. Theab initio calculations are performed
within the local density approximation (LDA) to density-functional theory, using the Ceperley–
Alder exchange and correlation functional [10]. An aluminum pseudopotential generated with
the method of Troullier and Martins [11] is used in the Kleinman–Bylander [12] non-local
form. These methods have been used with success in a large number of previous bulk, surface
and interface studies [13, 14]. We considerunrelaxedthin slabs of the metal separated by
six equivalent vacuum layers in a supercell geometry. We use a plane-wave basis set with a
kinetic energy cut-off of 16 Ry and 45 Monkhorst–Pack [15]k-points in the irreducible part
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of the Brillouin zone. The Fermi level is positioned with a Gaussian broadening scheme of
the electronic levels [16], with a standard deviation of 0.01 Ry. With these parameters, and for
a given slab thickness, the numerical uncertainty on the slab Fermi energy is estimated to be
∼0.03 eV.

By definition, the work functionW is the minimum energy required to extract one electron
to an infinite distance from the surface:W = [Vel(+∞) + EN−1] − EN , whereVel(+∞) is
the electrostatic potential energy of the electron far from the surface.EN andEN−1 are the
total energies of the system withN andN − 1 electrons respectively. Following Lang and
Kohn [17], this expression is exactly equivalent to:

W = 1Vel − EF (1)

where1Vel = Vel(+∞)−Vel(−∞) is the rise in the mean electrostatic potential energy across
the metal surface, andEF is the Fermi energy relative to the mean electrostatic potential energy
Vel(−∞) in the metal interior. Alternatively, if the energies are referred to the potential in the
vacuum far from the surface, the work function is directly given by the negative of the Fermi
energy (which we now writeEsF ) [5,18]:

W = −EsF . (2)

Work functions are commonly evaluated using this expression, by measuring the Fermi energy
EsF of thin slabs with respect to the potential in the vacuum region [5–8,19–22].
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Figure 1. Local density of states in an Al(100) six-layer thin slab, per eV and per unit cell�.
Curves 0 to III have been calculated in the corresponding regions indicated at the bottom of the
figure and exhibit the LDOS of layers increasingly deep in the slab. Curves II and III have been
shifted vertically to enhance the readability. The energy zero is set at the vacuum level and the
Fermi energy of the slabEsF is indicated by the vertical dashed line at−4.41 eV. The inset shows
the density of states in a bulk Al crystal, referenced to the bulk Fermi energyEF .
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In figure 1, we show the calculated local density of states (LDOS) of a six-layer-thick
Al(100) slab. The calculated energies are referenced to the potential energy in the vacuum
region, and the Fermi energyEsF therefore yields the work function of the thin film, according
to equation (2). Given the smallness of the interslab tunnelling across the vacuum region, the
electronic wave functions of the system are practically confined in the well formed by the thin
metallic slab and are quantized in the transverse direction. This is clearly reflected in the LDOS
of figure 1 which exhibits a series of steps that are reminiscent of two-dimensional systems.
Even at the centre of the film, the LDOS does not recover the parabolic shape of the Al bulk
density of states, emphasizing the importance of QSE. In this respect, the situation is quite
different from that observed in supercell calculations of the Al/GaAs(100) heterostructure [23],
where QSE are smaller.

The individual electronic wave functions and energies of the metal slab in a vacuum are
thus influenced by QSE, and are different from those of the bulk metal. The slab Fermi energy,
therefore, depends sensitively on the film thickness and induces large size effects on the work
function. In figure 2, we present the work functions of a series of thin slabs of Al(100)
with an increasing number of atomic planes. The work functions have been calculated using
equation (2), and represent the position of the slab Fermi level with respect to the electrostatic
potential in the middle of the vacuum region. These values are close to the work functions found
by other authors for 9- and 15-layer slabs using similar computational approaches [20, 21].
Quantum-size effects in the slab Fermi level appear across the full range of slabs displayed in
figure 2.
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Figure 2. Work functionsW of Al(100) thin films (in eV), as a function of the slab thickness,
computed using the position of the slab Fermi level:W = −EsF . The shaded area indicates the
uncertainty range for slabs thicker than three atomic layers.

To estimate more precisely the work function of a semi-infinite crystal from thin-film
calculations, one should avoid the use of equation (2) and instead calculate the work function
using slab quantities which are less sensitive to size effects than the Fermi energy. The total
(electronic and ionic) charge density of the slab and the corresponding electrostatic potential
are such quantities, especially if one also introduces the macroscopic average technique.
This technique has previously been employed successfully in the study of semiconductor
heterojunction band-offsets [24] and Schottky barriers [23]. The electronic densityn(Er) is the
basic variable calculated by all standardab initiocodes within density-functional theory. When
self-consistency is attained, we calculate the planar averagen(z) = S−1

∫
S
n(Er)dxdy, where

thez axis is chosen perpendicular to the slab surfaceS. The macroscopic average electronic
densityn(z) is defined from the planar average by an integration over the interplanar distance
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d of the slab:

n(z) = 1

d

∫ d/2

−d/2
n(z + z′)dz′. (3)

From the total charge density, including the ionic charge contribution, the electrostatic potential
Vel(Er) is easily recovered via the Poisson equation. Since these operations are linear, the plane-

averaged potentialV el(z) is related to its macroscopic averageV el(z) by a relation analogous

to equation (3):V el(z) = d−1
∫ d/2
−d/2V el(z+z′)dz′. By averaging over the interplanar distance,

we evacuate all atomic-scale oscillations and expect stable values to be recovered not too far
from the surface. This procedure is best applied to unrelaxed surfaces, where the interplanar
distanced is constant. However, it can also be used for relaxed slabs, as long as a minimum
number of planes in the centre of the film are kept fixed at their unrelaxed locations, so defining
the bulk interplane spacingd to be used for the macroscopic averaging.

In figure 3 we display the planar and macroscopic averages of the electronic charge density
and the total electrostatic potentialVel for the Al(100) slab with the six atomic layers previously
studied in figure 1. The potentialVel includes the electron Hartree potential and the point-
charge potential of the Al3+ ions. While the planar averages show oscillations in the metal
with the periodicity of the atomic planes, the macroscopic averages exhibit very stable values
both in the vacuum and in the metal not far from the slab surfaces. In this way, the potential
difference1Vel between the metal and the vacuum can be precisely measured even in very
thin films.

To determine more accurately the work functionW of a semi-infinite crystal, we return
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Figure 3. Upper panel: plane-averaged electronic charge densityn(z) (dashed line) and
corresponding macroscopic averagen(z) (solid line), in electrons per unit cell�, for an unrelaxed
Al(100) six-layer thin film. The double-step function indicates the macroscopic average of the
Al3+ point-ion charge density and the grey circles denote the atomic planes. Lower panel: plane-
averaged total electrostatic potentialV el(z) (dashed line) and corresponding macroscopic average

V el(z) (solid line) for the same film. The bulk Fermi levelEF , the surface electrostatic potential
step1Vel , and the work functionW are indicated.
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to equation (1), exploiting the separation of the work function into a surface-dependent and
a bulk contribution. The surface-dependent component1Vel is evaluated from the thin slab
by means of the macroscopic average of the total electrostatic potential (see figure 3). The
position of the Fermi levelEF with respect to the average electrostatic potential in the metal
is evaluated by aseparatecalculation for bulk Al. This involves a small unit cell, can be
performed very precisely with a high cut-off and a large density ofk-points (we use 36 Ry and
570 reducedk-points), and eliminates QSE altogether for this contribution. The precision of
the work functionW is thus limited essentially by the surface-dependent term1Vel , whose
numerical accuracy we estimate to be comparable to that of the Fermi energy (∼0.03 eV).
Although this technique is equivalent to the use of equation (2) for sufficiently thick slabs, we
expect equation (1) to be less sensitive to QSE and to converge faster to the work function of the
semi-infinite crystal as a function of the slab thickness. Equation (1) is less affected by QSE
since it relies on the total electron charge density in the slab and not on the individual electronic
states. This procedure is thus less sensitive to the details of the thin-film band structure, such
as the position of the slab Fermi level, which is employed in equation (2).

In figure 4, we present the values of the work functions for the same series of thin slabs
as in figure 2, but here computed using the macroscopic-average technique for the surface
electrostatic potential step and the Fermi energy derived from a bulk calculation. Compared
with the results of the standard technique shown previously in figure 2, QSE have been
noticeably reduced, the oscillations of the work function above four atomic layers having
been roughly halved, and convergence within 0.03 eV is achieved with a smaller number of
atomic planes.
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Figure 4. Work functionsW of Al(100) thin films (in eV), as a function of the slab thickness,
calculated by combining the surface potential step of the slab and the bulk Fermi level. The shaded
area indicates the uncertainty region above three atomic layers.

The procedure we propose here exploits a separation of the work function into a bulk
contribution and a surface-dependent term. Such a separation is not uniquely defined since the
values of the two individual terms depend on the possibility of including a number of short-
range local components of the crystal potential in either one or the other of the two contributions.
If pseudopotentials are used, an additional arbitrariness on both the bulk and the surface-
dependent contributions to the work function results from the choice of pseudopotential.
Concerning the separation, we stress that it is only the sum of the two terms, i.e. the difference
between the Fermi level and the vacuum potential, that is physically meaningful. We have
found that the fastest convergence of work function values with slab thickness and plane-wave
cut-off is obtained when the exchange-correlation and the so-called alpha terms [25] of the
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average local crystal potential are included in the bulk contribution. Within LDA, the exchange-
correlation term of the crystal potential is a local short-range potential, and its average value
in the crystal can therefore be included in the bulk Fermi-energy contribution. Similarly, for
the surface potential step it is convenient to use an ionic Coulomb potential generated by point
ions, rather than the local part of the ionic pseudopotential. The alpha term, resulting from
this difference, can then be included with the bulk contribution.

In figure 5 we compare the electrostatic potentialVel , consisting of the electronic Hartree
and Coulombic point-ion potentials, with the total local potentialVloc, given by the sum
of the electronic Hartree potential, the local part of the ionic pseudopotential and the LDA
exchange-correlation potential. We also show the exchange-correlation potentialVxc only.
The macroscopic average potentials are also represented and have been calculated directly
from the corresponding plane-averaged potentials. The electrostatic potential decay in the
vacuum is controlled by the extent of the electronic densityn(z). Far from macroscopic metal
surfaces,n(z) is known to decrease exactly asz−1e−2kz, wherek is related to the work function
W byk = √2mW/h̄ [26]. The dominant term in the electrostatic potential far from the surface
can be extracted by double integration of this charge density, and falls off asn(z)/W . The
convergence of the electrostatic potentialVel in the vacuum is thus extremely fast, and six
equivalent vacuum layers are enough to separate the repeated slabs in figure 5. We note that if
metals with smaller work functions than Al are considered, the number of equivalent vacuum
planes in the supercell will have to be increased further to account for the increased spreading
of the electronic charge into the vacuum.
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Figure 5. Plane average (left panel) and macroscopic average (right panel) of the electrostatic
potentialVel (thick solid lines), total local potentialVloc (dashed lines), and LDA exchange-
correlation potentialVxc (thin solid lines) for unrelaxed Al(100) six-layer thin slabs separated
by six equivalent vacuum layers. The grey circles correspond to the atomic planes.

In figure 5, we observe thatVxc accounts for a large proportion of the total potentialVloc,
and is seen to decrease more slowly in the vacuum than the electrostatic term. The number
of equivalent vacuum layers used here proves insufficient forVloc to converge adequately
in the vacuum region of the supercell. Therefore, if the total local potentialVloc is used to
evaluate the surface potential step1Vloc, a larger number of equivalent vacuum planes (at
least eight) are needed in the supercell for the Al work function to converge within 0.03 eV,
as observed in figure 6. Furthermore, we find that the cut-off for the slab calculation must be
increased (up to 36 Ry for full convergence) when the exchange-correlation and alpha terms are
included in the surface-dependent contribution1Vloc. Both these observations result mainly
from the very slow convergence to zero of the LDA potentialVxc(Er) in the vacuum region of
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Figure 6. Work function of a six-layer Al(100) slab, as a function of the number of equivalent
vacuum layers in the supercell, calculated by combining the bulk Fermi level with the electrostatic
potential step1Vel (solid line) and with the total local potential step1Vloc (dashed line). The local
potential step1Vloc was calculated with a cut-off of 36 Ry.

the supercell where the charge densityn(Er) tends to zero and the LDA exchange-correlation
potential behaves asn(Er)1/3. For example, charge densities below 10−10 a.u. (respectively
10−4 a.u.) are needed in the vacuum for the rise in the exchange-correlation (respectively
electrostatic) potential across the surface to be converged within 0.01 eV.

In conclusion, we have studied the use of the macroscopic-average method to the
calculation of work functions. This technique allows accurate work functions to be determined
from thin-slab calculations. We recover very stable charge densities and potentials inside the
slab by filtering the atomic oscillations in the electronic density. By relying only on the film
charge density to determine the work function, and not on the position of the slab Fermi level,
we have shown how quantum-size effects can be reduced. The work functions of semi-infinite
crystals can then be obtained by studying slabs with a small number of atomic layers.
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